Cloud Computing

- Part 1: Data centers
- Part 2: Cloud Computing
- Part 3: Kubernetes and Orchestration

Lec. 11 1

Part 1: Data Centers

- · Large server and storage farms
 - 1000s of servers
 - Many TBs or PBs of data
- Used by
 - Enterprises for server applications
 - · Internet companies
 - Some of the biggest DCs are owned by Google, Facebook, etc
 - Cloud Computing Platforms
- · Used for
 - · Data processing
 - · Web sites
 - · Business apps

```
University of
Massachusetts
Amherst
```

Inside a Data Center

- · Giant warehouse filled with:
- Racks of servers
- Storage arrays
- · Cooling infrastructure
- Power converters
- · Backup generators

Lec. 11 3

Traditional vs "Modern"

- · Data Center architecture and uses have been changing
- Traditional static
 - · Applications run on physical servers
 - · System administrators monitor and manually manage servers
 - · Use Storage Array Networks (SAN) or Network Attached Storage (NAS) to hold data
- Modern dynamic, larger scale
 - · Run applications inside virtual machines
 - · Flexible mapping from virtual to physical resources
 - · Increased automation allows larger scale

University of Massachusetts Amherst

Virtualization in Data Centers

- Virtual Servers
 - · Consolidate servers
 - · Faster deployment
 - · Easier maintenance
- Virtual Desktops
 - · Host employee desktops in VMs
 - · Remote access with thin clients
 - · Desktop is available anywhere
 - · Easier to manage and maintain

Server Virtualization

- · Allows a server to be "sliced" into Virtual Machines
- · VM has own OS/applications
- · Rapidly adjust resource allocations
- VM migration within a LAN

CS677: Distributed and OS

Lec. 11 6

5

Data Center Costs

- Running a data center is expensive
- Efficiency captured as PUE (Power Usage Effectiveness)
 - Ratio of Total Power / IT Power (typical: 1.7, Google PUE ~ 1.1)

http://perspectives.mvdirona.com/2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx

University of Massachusetts Amherst

CS677: Distributed and OS Lec. 11

Part 2: Cloud Computing

- · Cloud computing: use of remote servers to run distributed applications
- · Cloud computing platform
 - · Data center where remote resources can be leased by any user or company
 - · No need to create and deploy own data center and IT infrastructure
- · Benefits:
 - · Remotely available from the Internet
 - · Pay as you go
 - · Highly scalable: obtain resources on-demand
 - · Shared infrastructure and economy of scale

University of Massachusetts Amherst

Lec. 11 8

7

The Cloud Stack

Hosted applications Managed by provider

Platform to let you run your own apps Provider handles scalability

> Raw infrastructure Can do whatever you want with it

> > Lec. 11 9

laaS: Amazon EC2

- · Rents servers and storage to customers
 - · Uses virtualization to share each server for multiple customers
 - Economy of scale lowers prices
 - Can create VM with push of a button

	Smallest	Medium	Largest
VCPUs	1	5	33.5
RAM	613MB	1.7GB	68.4GB
Price	\$0.02/hr	\$0.17/hr	\$2.10/hr
Storage	\$0.10/GB per]
Bandwidt	\$0.10 per GB		'

CS677: Distributed and OS

Types of IaaS Instances

- On-demand instances
 - · Provision on-the-fly
 - · Pay by the minute
 - · Keep until terminated
- Reserved instances
 - · Long-term commitment for on-demand server: 1 year, 3 year
 - · Discount over on-demand pricing
- Spot instances
 - · Excess capacity sold by cloud platform at high discount
 - · Can be revoked by cloud provided with a warning time
 - · Take back server if regular customers need it
 - Cheap method to run large computations in off-peak periods

CS677: Distributed and OS

Lec. 11 11

PaaS Cloud

- · Cloud resources offered as highly scalable run-time platform
 - Application developers provide code
 - · Platform deploys code, provisions resources,
 - · Platform can also autoscale the application
 - Language supported: Python, Java, Node, .NET
 - · Users do not need to provision or manage servers resources
 - · Billing based on workloads or usage
 - · Serverless computing has similarities to PaaS

University of Massachusetts Amherst

Serverless Computing

- Developer: deploy code on a platform (eliminate need to provision servers)
- Cloud: platform can each application up or down automatically (elastic scaling)
 - · Scale down to zero possible when idle
- One popular form: function-as-a-Service (FaaS)
 - · Write code as a set of "functions" and deploy each function
 - · functions can be chained together
 - Functions are often stateless
 - · More fine-grained than micro-services
 - · AWS Lambda: FaaS in the cloud

Lec. 11 13

Public, Private, Hybrid Cloud

- · Not all enterprises are comfortable with using public cloud services
 - · Don't want to share CPU cycles or disks with competitors
 - · Privacy and regulatory concerns
- Private Cloud
 - · Use cloud computing concepts in a private data center
 - · Automate VM management and deployment
 - · Provides same convenience as public cloud
 - · May have higher cost
- · Hybrid Cloud
 - · Move resources between private and public depending on load
 - · Cloud Bursting

University of Massachusetts Amherst

Cloud Workloads

- Client/Server
 - · Web servers, databases, CDNs, etc
- · Batch processing
 - · Business processing apps, payroll, etc
- · Data processing and analytics
 - Data intensive computing: map reduce, spark
 - · Scalability concepts built into programming model
- · AI workloads: ML training
 - · Use servers with GPUs
- · High performance computing: specialized instances

Lec. 11 15

Cloud Storage

- Lease storage from cloud platforms
- Object storage: blobs of storage that use get() and put()
- Block storage / server disk local storage for laaS servers
- File Storage: network file system storage
 - · Can be shared across machines, not tied to a machine
- Archival storage used for backups
- Other models
 - · Dropbox: cloud storage for end-user machines; automatic sync
 - Google Drive, OneDrive, Box,
 - Cloud backups, Cloud media storage

CS677: Distributed and OS

Cloud Orchestration

- Cloud controller: similar to K8s controller
 - · Customer requests one or more instances
 - · Create virtual machines on cloud servers
 - · Configure networking and storage
 - Boot VM using specified images
- · IaaS platforms now support containers and VMs
 - Container orchestration similar to k8s but for third party users

Lec. 11 17

Part 3: Kubernetes (k8s)

- · Cluster management using containers
- Container-based Orchestration System
 - Based on Google's Borg /Omega cluster managers
- · Applications are containerized
- · K8s will deploy them onto machines of the cluster
 - Replicate app on multiple machines if requested
 - load balance across replicas
 - Can scale up or down dynamically (vary replica pool size, a concept similar top dynamic thread/process pools)
 - Provide automated **restart** upon detecting failure (self-healing)

K8s Pods

- · Pod: contains one or more containers that share volumes and name space
 - Pods: smallest granularity of allocation in k8s.
- · Distributed application: multiple components,
 - · each component inside a container
 - · Each pod consists of one or more components / containers
 - · Pod can contain all containers of an application but:
 - If a component needs to be scaled, put each such component in a separate pod
 - · Application consists of a set of pods, each independently scalable
 - · Pods of an application can span multiple cluster machines

Host A

app=ngin env=prod

Labels: app=nginx env=prod

Host B

env=prod

Labels

Service

Labels:

Labels:

Lec. 11 19

k8s Services

- · service: method to access a pods's exposed interfaces
 - static cluster IP address
 - static DNS name
 - · Services are not ephemeral
 - · collection of pods
- · Pods are ephemeral
 - · each has its own IP
 - · can be migrated to another machine

University of Massachusetts Amherst CS677: Distributed and OS All k8s figures https://www.sli	courtesy of Jeshare.net/rishabhindoria52/introduction-to-kubernetes-139878615
--	--

Control Plane

- **apiserver**: REST interfaces for clients to access management interface
- etcd: cluster key-value datastore
 - strongly consistent, highly durable (uses RAFT consensus)
- controller-manager: replicate pods, monitor for node failures and restart
- **scheduler:** assigns newly created pods to servers based on resource constraints
- cloud-controller-manager: interact with cloud platforms

University of Massachusetts Amherst

Lec. 11 21

K8s Node

- · kubelet: agent on each node
 - · ensure containers are running and healthy
- kubelet proxy
 - Manage network rules
 - · Load balancing for cluster services
- container runtime
 - runtime for container execution
 - containerd/docker, cri-o, rkt

University of Massachusetts Amherst

containerd

- Container orchestration runtime that is basis for docker, k8s and many other systems: for "lifecycle management"
 - Designed to be used as part of a larger system
 - Used by google, amazon, azure, IBM, docker, ...

